Refine Your Search

Topic

Search Results

Standard

Measuring Aircraft Gas Turbine Engine Fine Fuel Filter Element Performance

2014-11-20
HISTORICAL
ARP1827C
This SAE Aerospace Recommended Practice (ARP) delineates two complementary filter element performance ratings: (1) dirt capacity, and (2) filtration efficiency, and corresponding test procedures. It is intended for non-cleanable (disposable), fine fuel filter elements used in aviation gas turbine engine fuel systems.
Standard

Multi-Pass Method for Evaluating Filtration Performance of Fine Lube Filter Elements Utilized in Aerospace Power and Propulsion Lubrication Systems

2014-10-08
HISTORICAL
ARP5454B
This SAE Aerospace Recommended Practice (ARP) describes the multi-pass method for evaluating the filtration performance of fine lube filter elements, commonly utilized in aerospace power and propulsion lubrication systems: gas turbine engines, auxiliary power units (APUs), helicopter transmissions, constant speed drives (CSDs), and integrated drive generators (IDGs).
Standard

Contaminants for Aircraft Turbine Engine Fuel System Component Testing

2010-08-05
HISTORICAL
AIR4246C
This document discusses descriptions of fluid contamination products. These contaminants are used for design evaluation and formal component qualification/certification testing. Such tests are routinely performed on candidate aircraft engine fuel and pneumatic system components. Typical of these components are fuel pumps, fuel filters, fuel controls, pressurizing valves, flow dividers, selector valves, and combustor nozzles. The purpose of this document is to recommend standard descriptions to be used by specification writers.
Standard

Measuring Aircraft Gas Turbine Engine Fine Fuel Filter Element Performance

2009-10-30
HISTORICAL
ARP1827B
This SAE Aerospace Recommended Practice (ARP) delineates two complementary filter element performance ratings: (1) dirt capacity, and (2) filtration efficiency, and corresponding test procedures. It is intended for non-cleanable (disposable), fine fuel filter elements used in aviation gas turbine engine fuel systems.
Standard

Multi-Pass Method for Evaluating Filtration Performance of Fine Lube Filter Elements Utilized in Aerospace Power and Propulsion Lubrication Systems

2008-12-17
HISTORICAL
ARP5454A
This SAE Aerospace Recommended Practice (ARP) describes the multi-pass method for evaluating the filtration performance of fine lube filter elements, commonly utilized in aerospace power and propulsion lubrication systems: gas turbine engines, auxiliary power units (APUs), helicopter transmissions, constant speed drives (CSDs), and integrated drive generators (IDGs).
Standard

BALL-ON-CYLINDER (BOC) AIRCRAFT TURBINE FUEL LUBRICITY TESTER

2007-12-04
HISTORICAL
AIR1794
This metric Aerospace Information Report (AIR) details a ball-on-cylinder (BOC) test device and specifies a method of rating the relative lubricity of aviation turbine fuel samples. The BOC produces a wear scar on a stationary steel ball by forcing it with a fixed load against a fuel wetted steel test ring in a controlled atmosphere. The test ring is rotated at a fixed speed so its surface is wetted by a momentary exposure to the fluid under test. The size of the wear scar is a measure of the test fluid lubricity and provides a basis for predicting friction or wear problems. This ARP is intended as a guide toward a standard practice, but may be subject to frequent change reflecting experience and technical advances. Use of this AIR is not recommended where flexibility of revision is impractical. Anyone interested in current information on BOC developments and technology should contact the Coordinating Research Council (CRC) Aviation Group on Aviation Fuel Lubricity.
Standard

FUEL PUMP THERMAL SAFETY DESIGN

2007-12-04
HISTORICAL
ARP594D
These recommendations cover only those design factors which might cause the pump motor or pump housing to act as an autogenous or spark-ignition source for explosive fuel vapors within the airplane tank.
Standard

Multi-Phase Method for Evaluating Filtration Performance of Fine Lube Filter Elements Utilized in Aerospace Power and Propulsion Lubrication Systems

2003-11-19
HISTORICAL
ARP5454
This SAE Aerospace Recommended Practice (ARP) describes the multi-pass method for evaluating the filtration performance of fine lube filter elements, commonly utilized in aerospace power and propulsion lubrication systems: gas turbine engines, auxiliary power units (APUs), helicopter transmissions, constant speed drives (CSDs), and integrated drive generators (IDGs).
Standard

Measuring Aircraft Gas Turbine Engine Fine Fuel Filter Element Performance

2003-05-15
HISTORICAL
ARP1827A
This SAE Aerospace Recommended Practice (ARP) delineates two complementary filter element performance ratings: (1) dirt capacity, and (2) filtration efficiency, and corresponding test procedures. It is intended for non-cleanable (disposable), fine fuel filter elements used in aviation gas turbine engine systems.
Standard

CONTAMINANTS FOR AIRCRAFT TURBINE ENGINE FUEL SYSTEM COMPONENT TESTING

1994-11-01
HISTORICAL
AIR4246A
This document discusses descriptions of fluid contamination products. These contaminants are used for design evaluation and formal component qualification/certification testing. Such tests are routinely performed on candidate aircraft engine fuel and pneumatic system components. Typical of these components are fuel pumps, fuel filters, fuel controls, pressurizing valves, flow dividers, selector valves, and combustor nozzles. The purpose of this document is to recommend standard descriptions to be used by specification writers.
Standard

FUEL PUMP THERMAL SAFETY DESIGN

1978-11-01
HISTORICAL
ARP594C
These recommendations cover only those design factors which might cause the pump motor or pump housing to act as an autogenous or spark-ignition source for explosive fuel vapors within the airplane tank.
Standard

AIRCRAFT FUEL SYSTEM VAPOR-LIQUID RATIO PARAMETER

1974-01-01
HISTORICAL
AIR1326
The AIR is limited to a presentation of the historical background, the technical rationale which generated the V/L fuel condition interface requirement in specifications between the aircraft fuel delivery system and the aircraft engine fuel system, and limitations in the usage of the V/L concept.
X